Saltar al contenido

¿Cuántos tipos de aerogeneradores se han diseñado y cuáles son sus diferencias?

marzo 20, 2022
¿Cuántos tipos de aerogeneradores se han diseñado y cuáles son sus diferencias?

Altura del aerogenerador

Componentes del aerogenerador: 1-Fundación, 2-Conexión a la red eléctrica, 3-Torre, 4-Escalera de acceso, 5-Control de la orientación del viento (control de guiñada), 6-Nacelle, 7-Generador, 8-Anemómetro, 9-Freno eléctrico o mecánico, 10-Caja de cambios, 11-Palas del motor, 12-Control del paso de las palas, 13-Cubo del motor

El diseño de un aerogenerador es el proceso de definir la forma y la configuración de una turbina eólica para extraer energía del viento[1]. Una instalación consta de los sistemas necesarios para captar la energía del viento, orientar la turbina hacia el viento, convertir la rotación mecánica en energía eléctrica y otros sistemas para arrancar, parar y controlar la turbina.

En 1919, el físico alemán Albert Betz demostró que para una hipotética máquina ideal de extracción de energía eólica, las leyes fundamentales de conservación de la masa y la energía no permitían capturar más de 16/27 (59,3%) de la energía cinética del viento. Este límite de la ley de Betz puede acercarse a los diseños modernos de turbinas que alcanzan entre el 70 y el 80% de este límite teórico.

Además de las palas, el diseño de un sistema completo de energía eólica debe tener en cuenta el buje, los controles, el generador, la estructura de soporte y los cimientos. Las turbinas también deben integrarse en las redes eléctricas.

La turbina eólica más alta

Las centrales eólicas producen electricidad mediante un conjunto de turbinas eólicas en el mismo lugar. La ubicación de una central eólica depende de factores como las condiciones del viento, el terreno circundante, el acceso a la transmisión eléctrica y otras consideraciones sobre el emplazamiento. En una planta eólica a escala de servicio público, cada turbina genera electricidad que va a una subestación donde se transfiere a la red que alimenta a nuestras comunidades.

Los transformadores reciben la electricidad de CA (corriente alterna) a un voltaje y aumentan o disminuyen el voltaje para suministrar la electricidad según sea necesario. Una central eólica utiliza un transformador elevador para aumentar la tensión (reduciendo así la corriente necesaria), lo que disminuye las pérdidas de energía que se producen al transmitir grandes cantidades de corriente a través de largas distancias con líneas de transmisión. Cuando la electricidad llega a una comunidad, los transformadores reducen la tensión para hacerla segura y utilizable por los edificios y hogares de esa comunidad.

Una subestación conecta el sistema de transmisión con el sistema de distribución que suministra electricidad a la comunidad. Dentro de la subestación, los transformadores convierten la electricidad de alto voltaje a voltajes más bajos que pueden ser entregados de forma segura a los consumidores de electricidad.

Peso del aerogenerador

Todo lo que se mueve tiene energía cinética, y los científicos e ingenieros están utilizando la energía cinética del viento para generar electricidad. La energía eólica, o energía del viento, se crea utilizando un aerogenerador, un dispositivo que canaliza la fuerza del viento para generar electricidad.

El viento mueve las palas de la turbina, que están unidas a un rotor. El rotor hace girar un generador para crear electricidad. Hay dos tipos de turbinas eólicas: las de eje horizontal (HAWT) y las de eje vertical (VAWT). Las HAWT son el tipo más común de turbina eólica. Suelen tener dos o tres palas largas y finas que se parecen a las hélices de un avión. Las palas están colocadas de forma que se orientan directamente hacia el viento. Las VAWT tienen palas curvadas más cortas y anchas que se asemejan a los batidores de una batidora eléctrica.

Las pequeñas turbinas eólicas individuales pueden producir 100 kilovatios de potencia, suficiente para alimentar una casa. Los aerogeneradores pequeños también se utilizan en lugares como estaciones de bombeo de agua. Los aerogeneradores un poco más grandes se asientan en torres de hasta 80 metros de altura y tienen palas de rotor de unos 40 metros de largo. Estas turbinas pueden generar 1,8 megavatios de potencia. Hay aerogeneradores aún más grandes encaramados en torres de 240 metros de altura y con palas de más de 162 metros de longitud. Estas grandes turbinas pueden generar entre 4,8 y 9,5 megavatios de potencia.

Energía eólica

ResumenLa búsqueda de un diseño adecuado del parque eólico (WF) constituye una tarea compleja en un proyecto de energía eólica. Se necesita un enfoque de optimización para hacer frente a esta complejidad, especialmente con la tendencia actual de grandes áreas de parques eólicos con un número importante de aerogeneradores (WT). El presente trabajo investiga el estudio de optimización del diseño de un WF offshore realista (horns-rev1). El objetivo principal del presente estudio es diseñar un área de WF que maximice la extracción de energía eólica con un bajo coste. En el primer paso, se desarrolla un modelo de optimización mediante algoritmo genético con representación de layout continuo para buscar el diseño óptimo en función de la colocación de los WTs. La eficacia de dicha metodología se valida y se compara con el trazado de referencia e irregular del WF offshore hors-rev1. Con el fin de analizar el impacto de los tipos de WTs en los objetivos del WF, se consideran cuatro WTs comerciales en el segundo paso. Los resultados mostraron que el diseño del WF con WTs grandes da la mejor disposición de diseño. Además, se demostró que la selección de los tractores de agua basada únicamente en el tamaño del diámetro del rotor no siempre es una buena idea. Se debe incluir también el número de WTs que influyen significativamente en la producción de energía y en el coste del WF.

Esta web utiliza cookies propias para su correcto funcionamiento. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad