Generador eólico
La altura del buje de un aerogenerador es la distancia desde el suelo hasta el centro del rotor de la turbina. La altura del buje de los aerogeneradores terrestres ha aumentado un 59% desde 1998-1999, hasta alcanzar unos 90 metros en 2020. Eso es casi tan alto como la Estatua de la Libertad. Se prevé que la altura media del buje de las turbinas marinas en Estados Unidos aumente aún más: de 100 metros (330 pies) en 2016 a unos 150 metros (500 pies), es decir, la altura del Monumento a Washington, en 2035.
El diámetro del rotor de una turbina, o la anchura del círculo barrido por las palas giratorias (los círculos punteados de la segunda ilustración), también ha crecido con los años. En 2010, ninguna turbina en Estados Unidos empleaba rotores de 115 metros (380 pies) de diámetro o más. En 2020, el 91% de las nuevas turbinas instaladas tenían este tipo de rotores. El diámetro medio del rotor en 2020 era de unos 125 metros (410 pies), más largo que un campo de fútbol.
Los rotores de mayor diámetro permiten a los aerogeneradores barrer más superficie, captar más viento y producir más electricidad. Una turbina con palas más largas podrá captar más viento que las palas más cortas, incluso en zonas con relativamente menos viento. La capacidad de captar más viento a menor velocidad puede aumentar el número de zonas disponibles para el desarrollo eólico en todo el país. Debido a esta tendencia, las áreas de barrido del rotor han crecido un 570% desde 1998-1999.
Cuánto miden las palas de un aerogenerador
La segunda es elevar las palas a la atmósfera, donde el viento sopla con mayor intensidad. Esto aumenta el “factor de capacidad” de la turbina, es decir, la cantidad de energía que produce realmente en relación con su potencial total (o más coloquialmente: la frecuencia con la que funciona).
La historia del desarrollo de la energía eólica ha sido la historia de la ingeniería de turbinas cada vez más altas con palas cada vez más grandes. Es un asunto complicado y delicado. Las cosas altas y delgadas, colocadas en vientos fuertes, tienden a doblarse y flexionarse. Cuando las palas largas de las turbinas se doblan, pueden chocar contra la torre o el buje, como le ocurrió a este sistema danés en 2008 después de que le fallara el “freno” y quedara fuera de control:
Así que el tercer reto de la ingeniería es encontrar diseños y materiales que puedan soportar las tensiones que conllevan la altura y los vientos más fuertes. Esas tensiones son bastante intensas: mira este vídeo en el que los ingenieros prueban una enorme pala de turbina tirando de ella de un lado a otro con “el peso de aproximadamente 16 elefantes africanos”.
El aerogenerador más potente
Existen varias guías de compra para ayudar a los consumidores a adquirir un sistema eólico. Se puede considerar el uso de la guía de compra anual de la revista HomePower. Hasta que los datos del Consejo de Certificación de Viento Pequeño sean más sólidos, ésta es una de las pocas fuentes que ofrecen comparaciones de aerogeneradores en paralelo.
Algunos expertos consideran que el uso de los factores de capacidad para hablar de las instalaciones eólicas pequeñas no es apropiado. (Gipe, 2006). Sin embargo, muchos consumidores descubren que el fabricante o el instalador citan los factores de capacidad durante el proceso de venta. En su lugar, debería pedir cálculos de la producción anual de energía. El factor de capacidad es una relación entre la producción real de la turbina y la cantidad de producción que podría tener si funcionara a pleno rendimiento el 100% del tiempo. Hay varias razones por las que esta medida no es útil. Sin embargo, si le citan un factor de capacidad, tenga en cuenta que los factores de capacidad de la pequeña eólica oscilan entre el 9% y el 22%. Una cifra más alta es mejor, pero los factores de capacidad superiores al 22% no son realistas para la pequeña eólica. Los factores de capacidad del 30 al 45 por ciento o más son típicos de las máquinas comerciales de 1,5 a 2,5 megavatios, pero no son posibles para las turbinas eólicas pequeñas.
Producción de aerogeneradores
Un aerogenerador es un dispositivo que convierte la energía cinética del viento en energía eléctrica. Cientos de miles de grandes turbinas, en instalaciones conocidas como parques eólicos, generan actualmente más de 650 gigavatios de energía, a los que se añaden 60 GW cada año[1]. Son una fuente cada vez más importante de energía renovable intermitente, y se utilizan en muchos países para reducir los costes energéticos y la dependencia de los combustibles fósiles. Un estudio afirmaba que, a partir de 2009[actualización], la eólica tenía las “menores emisiones relativas de gases de efecto invernadero, las menores demandas de consumo de agua y… los impactos sociales más favorables” en comparación con la fotovoltaica, la hidráulica, la geotérmica, el carbón y el gas[2].
Las turbinas eólicas más pequeñas se utilizan para aplicaciones como la carga de baterías para la energía auxiliar de barcos o caravanas, y para alimentar las señales de tráfico. Las turbinas más grandes pueden contribuir al suministro de energía doméstica y vender la energía no utilizada al proveedor de servicios públicos a través de la red eléctrica.
La rueda de viento de Héroe de Alejandría (10 d.C. – 70 d.C.) es uno de los primeros ejemplos registrados de máquinas alimentadas por el viento en la historia[3][4]. Sin embargo, las primeras centrales eólicas prácticas conocidas se construyeron en Sistán, una provincia oriental de Persia (actual Irán), a partir del siglo VII. Estos “Panemone” eran molinos de viento de eje vertical, que contaban con largos ejes de transmisión verticales con palas rectangulares[5]. Fabricados con entre seis y doce velas cubiertas de estera de caña o material de tela, estos molinos se utilizaban para moler grano o extraer agua, y se empleaban en las industrias de la molienda y la caña de azúcar[6].